
The backnaur package
Adrian P. Robson∗

Version 3.1
18 June 2019

1 Introduction
The backnaur package typesets Backus-Naur Form (BNF) definitions. It creates
aligned lists of productions, with numbers if required. It can also print in line
BNF expressions using math mode.

Backus-Naur Form is a notation for defining context free grammars. It is used
to describe such things as programming languages, communication protocols and
command syntaxes, but it can be useful whenever a rigorous definition of language
is needed.

2 BNF Definitions
The following is a BNF definition of a semicolon separated list:

〈list〉 |= 〈listitems〉 | λ
〈listitems〉 |= 〈item〉 | 〈item〉 ; 〈listitems〉

〈item〉 |= description of item

Here, |= signifies produces, | is an or operator, 〈...〉 are production names, and λ
represents the empty string. However, some BNF users prefer alternative termi-
nologies, where |= stands for is defined as, 〈...〉 is a category name or nonterminal,
and λ is refered to as null or empty.

The above definition was created with the following code:

\usepackage{backnaur}
...
\begin{bnf*}

\bnfprod{list}
{\bnfpn{listitems} \bnfor \bnfes}\\

\bnfprod{listitems}
{\bnfpn{item} \bnfor \bnfpn{item}
\bnfsp \bnfts{;} \bnfsp \bnfpn{listitems}}\\

\bnfprod{item}
{\bnftd{description of item}}

\end{bnf*}

∗adrian.robson@nepsweb.co.uk

1

Each BNF production is defined by a \bnfprod command, which has two argu-
ments giving its left and right sides. The right hand side of each production is
specified with the commands described in §3.4 below. Terminal (\bnfts{;}) and
nonterminal (\bnfpn{item}), elements are separated by spaces (\bnfsp) and OR
symbols (\bnfor). The \bnfes command gives the symbol for the empty string.

3 Package Commands
3.1 Loading and options
The package is loaded with

\usepackage{backnaur}
or

\usepackage[<options>]{backnaur}

Possible options are
perp The empty string symbol is ⊥
epsilon The empty string symbol is ε
tsrm Terminal string typeface is roman
altpo Production operator is ::=
The defaults are: the empty string symbol is λ, the production operator is |=, and
the terminal string typeface is typewriter.

3.2 Environments
BNF productions are defined in a bnf or bnf* environment, which respectivelybnf
give numbered or unnumbered lists of productions.bnf*

\begin{bnf}
<list of productions>

\end{bnf}

\begin{bnf*}
<list of productions>

\end{bnf*}

3.3 Productions
A production is defined by \bnfprod or \bnfprod*, which respectively give a\bnfprod

\bnfprod* numbered or unnumbered line in the bnf environment. They have identical un-
numbered behaviour in the bnf* enviromment. They take two arguments:

\bnfprod{<production name>}{<production definition>}
\bnfprod*{<production name>}{<production definition>}

A production can be continued on addition lines by \bnfmore or \bnfmore*,\bnfmore
\bnfmore* which respectively give a numbered or unnumbered line in the bnf environment.

They are treated the same in the bnf* environment. They take one arguments:

\bnfmore{<production definition>}
\bnfmore*{<production definition>}

2

3.4 Production definitions
The following commands are used to compose the right hand side of a production.
They are deployed in the second argument of the \bnfprod command.

The \bnfpn command generates a production name. It takes a single argument\bnfpn
that is the name. It is used as follows:

\bnfpn{list item} 〈list item〉

There are three types of terminal item: a literal string, a descriptive phrase and
an empty string. A literal terminal string is specified by the \bnftm command,\bnftm
which takes a single argument. By default literal terminal strings are printed in
typewriter font, but this can be changed as a package option (see §3.1). The\bnftd
\bnftd command generates a descriptive phrase, as an alternative to a literal
string. The \bnfes command generates a token that represents the empty string.\bnfes
This is normally λ, but it can be changed to ε or ⊥ as a package option (see §3.1).

\bnfts{terminal}
\bnftd{description}
\bnfes

terminal
description
λ

Some literal terminal strings can be abbreviated with the ‘skip’ token, which\bnfsk
is generated by the \bnfsk command. This substitutes for a sequence of terminal
characters. It is used like this:

\bnfts{A} \bnfsk \bnfts{Z} A . . . Z

All items should be separated by an OR or a space. The \bnfor command\bnfor
generates the OR symbol, and the \bnfsp command introduces a space. A space\bnfsp
can be considered equivalent to an AND operator.

\bnfpn{abc} \bnfor \bnfts{xzy}
\bnfpn{abc} \bnfsp \bnfts{xzy}

〈abc〉 | xzy
〈abc〉 xzy

3.5 Inline expressions
The \bnfprod and \bnfmore macros cannot be used inline, so the \bnfpn
and \bnfpo macros are provided to support typeseting productions inline us-
ing maths mode. The production’s name can be typeset with \bnfpn{name}\bnfpn

\bnfpo and the production operator with \bnfpo. By default the production opera-
tor is |=, but it can be changed to ::= with a package option (see §3.1). The
right side of the production can be defined with the usual macros (see §3.4). So
$\bnfpn{name} \bnfpo \bnftd{description}$ gives 〈name〉 |= description.

3.6 Command summary
The commands that can be used to define a BNF production in a bnf or bnf*
environment are as follows:

3

Command Operator Outcome
\bnprod production line <name> |= def
\bnmore extra line |= def
\bnfor OR operator |
\bnfsk skip . . .
\bnfsp space/AND operator
\bnfes empty string λ
\bnfts{} terminal string terminal
\bnftd{} terminal description description
\bnfpn{} production name 〈name〉
\bnfpo production operator |=

4 Example
Amore significant example is the following definition of a 〈sentence〉, where 〈cchar〉
are countable characters, and 〈ichar〉 are characters that should be ignored:

\begin{bnf*}
\bnfprod{sentence}

{\bnfpn{start} \bnfsp \bnfpn{rest} \bnfsp \bnfts{.}}\\
\bnfprod{start}

{\bnfpn{space} \bnfor \bnfes}\\
\bnfprod{rest}

{\bnfpn{word} \bnfsp \bnfpn{space} \bnfsp \bnfpn{rest}
\bnfor \bnfpn{word} \bnfor \bnfes}\\

\bnfprod{word}
{\bnfpn{wchar} \bnfsp \bnfpn{word} \bnfor \bnfpn{wchar}}\\

\bnfprod{space}
{\bnfpn{schar} \bnfsp \bnfpn{space} \bnfor \bnfpn{schar}}\\

\bnfprod{wchar}
{\bnfpn{cchar} \bnfor \bnfpn{ichar} }\\

\bnfprod{cchar}
{\bnfts{A} \bnfsk \bnfts{Z} \bnfor \bnfts{a} \bnfsk
\bnfts{z} \bnfor \bnfts{0} \bnfsk \bnfts{9} \bnfor
\bnfts{\textquotesingle}}\\

\bnfprod{ichar}
{\bnfts{-}}

\bnfprod{schar}
{\bnfts{‘\hspace{1em}’} \bnfor \bnfts{!} \bnfor \bnfts{"}
\bnfor \bnfts{(} \bnfor \bnfts{)} \bnfor \bnfts{\{}
\bnfor \bnfts{\}} \bnfor }\\

\bnfmore{\bnfts{:} \bnfor \bnfts{;} \bnfor \bnfts{?} \bnfor
\bnfts{,} }

\end{bnf*}

This creates the following BNF definition:

〈sentence〉 |= 〈start〉 〈rest〉 . (1)
〈start〉 |= 〈space〉 | λ (2)
〈rest〉 |= 〈word〉 〈space〉 〈rest〉 | 〈word〉 | λ (3)

4

〈word〉 |= 〈wchar〉 〈word〉 | 〈wchar〉 (4)
〈space〉 |= 〈schar〉 〈space〉 | 〈schar〉 (5)
〈wchar〉 |= 〈cchar〉 | 〈ichar〉 (6)
〈cchar〉 |= A . . . Z | a . . . z | 0 . . . 9 | ' (7)
〈ichar〉 |= - (8)
〈schar〉 |= ‘ ’ | ! | " | (|) | { | } |

: | ; | ? | , (9)

Notice the kludge in production 9. We use \textrm{‘\hspace{1em}’} to typeset
a representation for a space character. This is needed because we do not want
to print in typewriter font, which would imply the quotes were part of an actual
terminal string. The \textrm is needed because are in maths mode.

5 Terminal string characters
The characters used with \bnfts{} (terminal string) are just standard LaTeX
that is typeset in either a roman or typewriter font. This means we might have
to use some escape pairs and a few special characters. Apostrophes and speech
marks can be confusing. There are some of the possibilities:

alpha \bnfts{abcdABCD} abcdABCD abcdABCD
numeric \bnfts{01234} 01234 01234
simple \bnfts{<>[]()*+-=} <>[]()*+-= <>[]()*+-=
simple \bnfts{@!?/,.;:} @!?/,.;: @!?/,.;:
escaped \bnfts{\{\}\$\%\&_\#} {}$%&_# {}$%&_#
quotes \bnfts{’ ‘ " ‘‘ ’’} ’ ‘ " “ ” ’ ‘ " “ ”
quotes \bnfts{\textquotesingle} ' '
pound \bnfts{\pounds} £ £
hat \bnfts{\textasciicircum} ^ ^
backslash \bnfts{\textbackslash} \ \
tilde \bnfts{\textasciitilde} ~ ~

The \textquotesingle symbol needs the textcomp package, which provides lots
of other interesting symbols. Consult the excellent The Comprehensive LATEX
Symbol List by Scott Pakin for more information.

5

