
RRG trees package
Version 1.1Nov 14 2004

D.J.Gardner

Document date: Dec 14 2004

1 Introduction

This package provides a simplified interface to pstricks module pst-tree for drawing the complex syntactic trees
found in RRG.

Role and Reference Grammar is a grammatical (syntactic) theory of human language that, unlike certain
other theories, does not make every language look like English. It also acknowledges that certain syntactic
phenomena cannot be accounted for except by reference to semantic and pragmatic considerations. As such is
well suited to the analysis of languages with features like: free word order; interesting split ergative/accusative
systems; pragmatic and/or semantic case assignment; switch-reference systems and minority languages in gen-
eral. For further details, see e.g. “Syntax”, Van Valin and LaPolla, Cambridge University Press:Cambridge
1993.

In LATEX terms, the most challenging aspect of it is that it allows (nay, rejoices in having!) syntactic trees
which have lines that cross, and also has an “operator projection” that is a distinct representation from the
syntactic tree of clause, NPs, etc. While it would be possible to draw these with a graphics package, the
nice features of LATEX that might allow the tree to self-scale to the document font, and adjust its parameters
depending on the font used and which words are to be displayed would be lost. Such diagrams are not easy
to construct using the pst-tree (part of pstricks) macros, but are possible by carefully combining pst-tree with
some pst-node commands. The flexibility of pst-tree in allowing any number of decendent nodes, unlike other
tree packages I’ve found, is clearly important for ease of use with language data. This package aims to make
RRG trees far easier to construct than would be possible using the raw commands.

The package also provides macros for displaying and typesetting other representations used in RRG, such
as the pred′() style of elements used in logical structures.

2 Drawing Basic Trees

An attempt has been made to make the commands for drawing trees and tree-elements relatively simple, while
allowing flexibility. If the full flexibility of the pst-node and pst-tree commands is required, there should be no
problem of mixing those in, indeed some complex constructions will need to use direct pst-node and pst-tree

commands.
It may be helpful to think of the commands as being divided between two categories: tree-building and line

drawing; or alternatively between the operator projection commands, and the syntactic structure commands.
Actually these two are pretty much orthogonal, and thus we have four groups of commands, although there is
considerable fuzziness at the edges (e.g. line drawing commands which also include tree building elements, and
tree elements that require some line drawing).

2.1 Basic Commands

The following example produces the layered structure for ‘the cat walked to the mat’, but marks the final PP
as unanalysed with a triangle. Normal font changing commands work and the separation between levels and
nodes of the tree may be changed using the normal pst-tree settings. In the example, the left-hand version was
produced by preceeding the commands with \psset{treesep=2ex}, the right-hand by preceeding them with
\small\bfseries \psset{treesep=2ex, levelsep=3em}.

1

\CLAUSE{

\CORE{

\OPR{2}{the}

\ARG{\WORD(NP){cat}}

\NUC{walked}

\AAJ{

\FanEnd{PP}{to the mat}

}

}

}

Clause

Core

the

Arg

NP

cat

Nuc

V

Pred

walked

AAJ

PP

to the mat

Clause

Core

the

Arg

NP

cat

Nuc

V

Pred

walked

AAJ

PP

to the mat

The commands \WORD and \NUC may optionally be followed by an operator projection (see section 2.4), \FanEnd
may not. \NUC also has an optional argument which allows the user to specify non-verb predicating elements,
e.g. \NUC[ADJ]{green}. \OPR is used to make operators, which have no drawn link to the layered structure. It
takes two required arguments — the number of levels/layers that should be skipped and the word itself — and
an optional argument which is a node name. See section 2.4 for further details.

\FanEnd and \CORE type commands accept an optional argument that specifies the node name for the Core

label. In the case of \FanEnd, this label applies to the text at the top of the triangle. Other commands that
behave in a similar manner to \CORE are: \SENTENCE, \CLAUSE, \PP, \NP, \NCORE, and \NNUC.

By some devious trickery, \FanEnd may (in addition to the label) have either two or three arguments. If
two arguments are given, as in the example, the the triangle or fan goes one level deep. If three arguments
are given, then the first argument specifies how many levels deep the fan should be. I.e either {top}{text} or
{levels}{top}{text} may be specified. If for some reason fine adjustments are needed to make the text marking
the fan line up with the rest of the sentence, the macro \rrgfantweak may be altered from the default of -1pt.

2.2 Periphery and Complementisers

A periphery element may be added using any of four commands, depending on which side (left or right) it is
of the relevant core it is to modify, and whether the label ‘Periphery’ should be positioned at a set distance
from the core or whether it should be positioned normally above its decendant nodes.

The ‘fixed offset’ commands are \LPERIPH and \RPERIPH, the ‘right angle’ commands \lPERIPH, \rPERIPH,
for left and right respectively.

The right angle commands take three required arguments: the number of levels/layers to skip, the label for
the upper node, and a tree. The fixed distance commands have an additional argument specifying the distance
from the modified core. All periphery aelements may have an optional argument to specify the core to which
they should apply. If this is used, then the relevant core should be labeled also, but with a prepended ‘CORE’,
as in the example below. Often it is more pleasing to have the periphery decended from an upper invisible node
(created by \TOP) than to have it distort the tree to which it logically belongs.

\psset{treesep=2ex}

\TOP{

\OPR{4}{the}

\CLAUSE{

\CORE[COREa]{

\ARG{\WORD(NP){cat}}

\NUC{walked}

\AAJ{\FanEnd{PP}{to the mat}}

}

\rPERIPH[a]{2}{PP}{\WORD{on the floor}}

}

}

\dolinks
the

Clause

Core

Arg

NP

cat

Nuc

V

Pred

walked

AAJ

PP

to the mat

PP

on the floor

Periphery

Complementisers (or clause linkage markers) are basicly of the same form as the periphery command, except
they do not have a tree argument. On the assumption that these usually come before the linked element, there
is also a short form: \CMPL. which is the same as \lCMPL. If a [label] argument is given, this should be the exact
label of the core or clause node which the \CMPL modifies. The default is to label the item cmpl, but changing
\CMPLtext will have immediate effect.

2

Note that the final command in the example is \dolinks. This command draws the parts of any periphery
and complementisers that were not drawn by the commands themselves. It should come after all linked nodes
have been defined but before the next page break.

2.3 Tree Labeling Commands

The following table gives the commands that are used in labeling the tree, with their default definitions and
result. The commands may of course be used in the main text and redefined as necessary.:

\Sentence {\scshape Sentence} Sentence

\Clause {\scshape Clause} Clause

\Core {\scshape Core} Core

\Conj {\scshape Conj} Conj

\CMPLtext {\scshape cmpl} cmpl

\Nuc {\scshape Nuc} Nuc

\Arg {\scshape Arg} Arg

\aaj {\scshape AAJ} AAJ

\pp {\scshape PP} PP

\np {\scshape NP} NP

\Periphery {\scshape Periphery} Periphery

2.4 The Operator Projection

The RRG projection decends below the text line. In this package there are three main commands concerned
with the operator projection: \OP, \OPJoin and \LINK (which also has variants \LLINK, \RLINK, \lLINK and
\rLINK, corresponding to the \CMPL commands). \OP is used to draw (and label) the operator layers below
verbs and nouns; \OPJoin is used in complex sentences to join two such stacks together and start a new stack of
operator layers (positioned half-way between the two); and \LINK draws perpendicular links from operators to
these layers, labeling them as specified. As expected, \LLINK and \RLINK place their text a specified distance
from the node in the tree to which they join.

Due to the way that the pst-tree commands work, \OPJoin cannot be used within any tree structure, and
also it has not been possible thus far to automatically add to the height of the picture in an accurate manner.
Thus some calculation is needed to account for extra depth of the structure that \OPJoin adds. The extra
height it is necessary to allow for at the bottom of the figure is ((2+operator levels in this stack) − Maximum
number of operators in other stacks)×\rrgoprsep.

In the case that an operator should decend from only part of a word (e.g. an affix) or from a non-word
position (e.g. the beginning or end of the text), the pst-node commands \pnode and \Rnode. should be used.
The following example and the table of arguments in the section 3 should make things clearer.

\begin{center}

\psset{treesep=2ex}

\TOP{

\OPR[DEFa]{5}{the}

\CLAUSE{

\CORE{

\CORE[COREa]{

\ARG{

\NP{

\WORD{cat}{

\OP{N}{\OP{\Nuc\subN}{\OP{\Core\subN}{\OP[cat]{\np}}}}

}

}

}

\LINK{DEFa}{cat}{DEF}

\OPR[might]{2}{\pnode{IF}might}

\OPR[not]{2}{not}

\NUC{forget}{\OP{V}{\OP{\Nuc}{\OP[forgetcore]{\Core}}}}

}

\CMPL[COREb]{3}{to}

\CORE[COREb]{

\NUC{eat}{\OP{V}{\OP{\Nuc}{\OP[eatcore]{\Core}}}}

\OPR[DEFb]{2}{the}

\ARG{

\NP{

3

\WORD{rat}{

\OP{N}{\OP{\Nuc\subN}{\OP{\Core\subN}{\OP[rat]{\np}}}}

}

\LINK{DEFb}{rat}{DEF}

}

}

}

}

}

\rPERIPH{4}{ADV}{\WORD{tomorrow}}

}

\OPJoin{forgetcore}{eatcore}{\OP[a]{\Core}{

\OP[b]{\Clause}{\OP[c]{\Clause}{\OP[d]{\Clause}}}}}

\LINK{might}{b}{MOD}

\LINK{not}{a}{NEG}

\LLINK{8em}{IF}{d}{IF}

\LINK{IF}{c}{TNS}

\dolinks

\vspace{6\rrgoprsep}

\end{center}

the

Clause

Core

Core

Arg

NP

cat

N

Nucn

Coren

NPDEF

might not

Nuc

V

Pred

forget

V

Nuc

Core

to

Core

Nuc

V

Pred

eat

V

Nuc

Core

the

Arg

NP

rat

N

Nucn

Coren

NPDEF

ADV

tomorrow

Core

Clause

Clause

Clause

Clause

MOD

NEG

IF

TNS

cmpl

Periphery

3 Tree-Building Commands and Arguments

In the table below, items in italic and their delimiters are optional. Where an argument is labeled “tree”, that
argument may be filled with one or more of the commands below, though some obviously make more sence than
others. An argument labeled “word” or “text” is anything that should appear in the tree, the only difference
between the arguments, is that “text” arguments are intended to be the text of the analysed sentence, and
“word” arguments label different parts of the tree structure. Arguments labeled “name” are node names, which
may be used for drawing lines to and from by various commands.

4

Command Arguments Summary Item Default

Named Name

\TOP {tree} Makes (zero sized) logical tree, but top
node and lines are not drawn.

\SENTENCE [name]{tree} New layer of structure Top SEN

\CLAUSE [name]{tree} New layer of structure Top CLS

\CORE [name]{tree} New layer of structure Top CORE

\ARG [name]{tree} New layer of structure Top arg

\AAJ [name]{tree} New layer of structure Top aaj

\PP [name]{tree} New layer of structure Top PP

\NP [name]{tree} New layer of structure Top NP

\NCORE [name]{tree} New layer of structure Top NC

\NNUC [name]{tree} New layer of structure Top NN

\OPR [name]{num}{text} Entry num levels below current node Text opr

\FanEnd [name]{num}{word}{text} Triangle/Fan (i.e. unanalysed) entry
below current node, with the apex
marked with the word argument.

Top fan

\End [name]{text}{tree} Obsolete simpler version of \WORD Text x

\WORD [name](word){text}{tree} Creates one or two level entry below
current node.

Text x

\NUC [word]{text}{tree} Predicating Nucleus
\OP [name]{word}{tree} Operator projection layer Text op

4 Line Drawing Commands

Command Arguments Summary

\CMPL [name]{num}{text} Also \rCMPL. Links to the object named (default:
CLAUSE) with right-angle connections.

\LCMPL [name]{length}{num}{text} Also \RCMPL. Links to the object named (default:
CLAUSE) with cmpl centered length from target.

\lPERIPH [Extn]{num}{word}{tree} Also \rPERIPH. Links to the object named
“COREExtn” with right-angle connections.

\LPERIPH [Extn]{length}{num}{word}{tree} Also \RPERIPH. Links to the object named
“COREExtn” with Periphery centered length

from target.
\lLINK [extra]{name}{name}{word} Also \rLINK. Links two named objects with right-

angle connections.
\LLINK [extra]{length}{name}{name}{word} Also \RLINK. Links two named objects with text

centered length from target.

In the above table the parameter named extra is appended to the optional argument of a \ncdiag or \ncangle
command. It may be used for forcing certain unusual drawing styles, but is best ignored. If used it must start
with a comma.

5 Misc. Commands

5.1 Logical Structures

Command Result Description

\pred{greet} greet′ Predicate in logical structure
\prddo do′ Shorthand for \pred{do}

\prdDO DO′ Shorthand for \pred{DO}

\SEML SEML Shorthand for {\textsf{SEML}\,}

\INGR INGR Shorthand for {\textsf{INGR}\,}

\BECOME BECOME Shorthand for {\textsf{BECOME}\,}

\CAUSE CAUSE Shorthand for {\textsf{CAUSE}\,}

\NOT NOT Shorthand for {\textsf{NOT}\,}

5

5.2 Other Commands and Lengths

\textsubscript{} Macro Subscript equivalent for textsuperscript command that is unaccount-
ably missing from latex.ltx

\sup{} Macro Shorthand for \textsuperscript
\sub{} Macro Shorthand for \textsubscript
\subN Macro Shorthand for \textsubscript{\scshape{n}}, for labeling

e.g. Coren (typed: \Core\subN)
\rrgoprsep Length Separation between levels on operator projection (default is 1.5em)
\rrgfantweak Macro Fine adjustment of fan (triangle) height. (default -1pt)
\dolinks Macro Necessary to actually draw and label lines for periphery and complemen-

tiser commands.

6 The code itself

1 \ProvidesPackage{rrgtrees}[2004/11/14 RRG tree drawing]

2 \RequirePackage{pst-node,pst-tree}

6.1 Logical structures

Before we start with the tree commands proper, we’ll use some shortcuts for writing logical structures. . .

3 \newcommand{\pred}[2][]{\textbf{#2}\ensuremath{’_{#1}}}

4 \newcommand\SEML{\textsf{SEML}\,}

5 \newcommand\INGR{\textsf{INGR}\,}

6 \newcommand\BECOME{\textsf{BECOME}\,}

7 \newcommand\CAUSE{\textsf{CAUSE}\,}

8 \newcommand\NOT{\textsf{NOT}\,}

9 \newcommand\prddo{\pred{do}}

10 \newcommand\prdDO{\pred{DO}}

. . . and some tree entries that we want to be consistent

11 \def\Sentence{{\scshape Sentence}}

12 \def\Clause{{\scshape Clause}}

13 \def\Core{{\scshape Core}}

14 \def\Conj{{\scshape Conj}}

15 \def\CMPLtext{{\scshape cmpl}}

16 \def\Nuc{{\scshape Nuc}}

17 \def\Arg{{\scshape Arg}}

18 \def\aaj{{\scshape AAJ}}

19 \def\pp{{\scshape PP}}

20 \def\np{{\scshape NP}}

21 \def\Periphery{{\scshape Periphery}}

6.2 Initial setup

We’ll now define a few lengths and sane defaults that will be needed later.

22 \newlength\rrgoprsep

23 \newlength\rrg@tmpdim

24 \newlength\rrg@tmpdima

25 \newlength\rrg@tmpdimb

26 \setlength{\rrgoprsep}{1.5em}

6.3 Generic versions of commands and internally used bits.

27 \def\rrg@empty@toks{\global\let\rrg@dolinks\@empty}

28 \rrg@empty@toks

The \dolinks is used to draw things that can only be done once the rest of the tree is defined. Tokens to
be executed are deferred into a collecting point by many commands and the macro executes the tokens in the
internal collection, and then resets the token list for the next tree.
29 \def\dolinks{\rrg@dolinks\rrg@empty@toks}

30 \def\@once@tmp{}

31 \def\rrg@addlinks{\g@addto@macro\rrg@dolinks}

32 \newcommand{\rrg@newnode}[1]{\@namedef{rrg@node@#1}{\null}}

6

If this had worked, it would have automatically and drawn the line if possible, or added a delay otherwise.
It would have been nicer, but it didn’t work. Dunno why.
33 %%Broken code:

34 %%\newcommand{\rrg@do@or@add@link}[3]{\@ifundefined{rrg@node@#1}{\typeout{#1

35 %% undefined}\rrg@addlinks{#3}}{\@ifundefined{rrg@node@#2}

36 %% {\typeout{#2 undefined}\rrg@addlinks{#3}}{#3}}}

This combines an arbitary level skip, with a right angled join, as used in periphery and clause link marker
elements.

Parameters: #1 = Pre-skip; #2 = Name of top node; #3 = Name of link-to node; #4 = Text of top node;
#5 = Lower tree; #6 = Mark at Right angle; #7 = Join angle at link-to node.
37 \newcommand{\rightangle@link}[7]{

38 \settowidth{\rrg@tmpdim}{#4}%

39 \skiplevels{#1}%

40 \rrg@newnode{#2}%

41 \ifdim\rrg@tmpdim>0pt

42 \pstree{\TR[edge=none, name=#2]{#4}}{%

43 #5}%

44 \else%

45 \TR[edge=none,name=#2]{#5}%

46 \fi%

47 \endskiplevels%

48 \rrg@addlinks{\ncangle[angleA=90,angleB=#7,armB=0]{->}{#2}{#3}%

49 \ncput*[npos=1]{#6}}}

This version produces a diagonal link for close spacing or line-crossing periphery (etc) elements.
50 \newcommand{\diag@link}[8]{

51 \settowidth{\rrg@tmpdim}{#4}%

52 \expandafter\typeout{\the\rrg@tmpdim}

53 \skiplevels{#1}%

54 \rrg@newnode{#2}%

55 \ifdim\rrg@tmpdim>0pt

56 \pstree{\TR[edge=none, name=#2]{#4}}{%

57 #5}%

58 \else%

59 \typeout{#4:#5}%

60 \TR[edge=none,name=#2]{#5}%

61 \fi%

62 \endskiplevels%

63 \rrg@addlinks{\ncdiagg[angleA=#7,armA=#8]{<-}{#3}{#2}%

64 \ncput*[npos=1]{#6}}}

Different versions of predicating nucleus, depending on presence of an operator projection
65 \newcommand{\@NUCa}[3]{\pstree{\TR{\@do@once\Nuc}}{

66 \pstree{\TR{#1}}{\pstree{\TR[name=verb]{\ncput*[npos=1.5]{\scshape{Pred}}#2}}{#3}}}}

67 \newcommand{\@NUCn}[2]{\pstree{\TR{\@do@once\Nuc}}{\pstree{\TR{#1}}%

68 {\TR[name=verb]{\ncput*[npos=1.5]{\scshape{Pred}}#2}}}}

6.4 User commands for periphery, etc.

69 \newcommand{\CMPL}[3][CLAUSE]{\rightangle@link{#2}{CMPL#1}{#1}{}{#3}{\CMPLtext}{180}}

70 \newcommand{\lCMPL}{\CMPL}

71 \newcommand{\rCMPL}[3][CLAUSE]{\rightangle@link{#2}{CMPL#1}{#1}{}{#3}{\CMPLtext}{0}}

72 \newcommand{\LCMPL}[4][CLAUSE]{\diag@link{#2}{CMPL#1}{#1}{}{#3}{\CMPLtext}{180}{#4}}

73 \newcommand{\RCMPL}[4][CLAUSE]{\diag@link{#2}{CMPL#1}{#1}{}{#3}{\CMPLtext}{0}{#4}}

74 \newcommand{\lPERIPH}[4][]{\rightangle@link{#2}{PERIPH#1}{CORE#1}%

75 {#3}{#4}{\Periphery}{180}}

76 \newcommand{\rPERIPH}[4][]{\rightangle@link{#2}{PERIPH#1}{CORE#1}%

77 {#3}{#4}{\Periphery}{0}}

78 \newcommand{\LPERIPH}[5][]{\diag@link{#2}{PERIPH#1}{CORE#1}{#3}%

79 {#4}{\Periphery}{180}{#5}}

80 \newcommand{\RPERIPH}[5][]{\diag@link{#2}{PERIPH#1}{CORE#1}{#3}%

81 {#4}{\Periphery}{0}[#5]}

6.5 Predicating Nucleus

82 \newcommand{\NUC}[2][V]{\@ifnextchar\bgroup{\@NUCa{#1}{#2}}{\@NUCn{#1}{#2}}}

7

6.6 More normal tree parts

6.6.1 Basic components

83 \newcommand{\TOP}[1]{\pstree[thislevelsep=0pt,linestyle=none]{\Tn}%

84 {\psset{linestyle=solid}#1}}

85 \newcommand{\SENTENCE}[2][SEN]{\pstree{\TR[name=#1]{\Sentence}\@do@once}{#2}}

86 \newcommand{\CLAUSE}[2][CLS]{\pstree{\TR[name=#1]{\Clause}\@do@once}{#2}}

87 \newcommand{\CORE}[2][CORE]{\pstree{\TR[name=#1]{\Core}\@do@once}{#2}}

88 \newcommand{\ARG}[2][arg]{\pstree{\TR[name=#1]{\Arg}\@do@once}{#2}}

89 \newcommand{\AAJ}[2][aaj]{\pstree{\TR[name=#1]{\aaj}\@do@once}{#2}}

90 \newcommand{\PP}[2][PP]{\pstree{\TR[name=#1]{\pp}\@do@once}{#2}}

91 \newcommand{\NP}[2][NP]{\pstree{\TR[name=#1]{\np}\@do@once}{#2}}

92 \newcommand{\NCORE}[2][NC]{\pstree{\TR[name=#1]{\Core\subN}\@do@once}{#2}}

93 \newcommand{\NNUC}[2][NN]{\pstree{\TR[name=#1]{\Nuc\subN}\@do@once}{#2}}

6.6.2 Word node

\WORD tries to be flexible in the arguments it gets. The user may optionally include the (part of speach) a
[name] for the {word} node, and possibly being followed by an {operator projection}. E.g. \WORD{hello},
\WORD[hi]{hello}, \WORD(N){cat}, \WORD(N)[pussy]{cat} are all permitted, as is any of the above with an
operator projection

94 \newcommand{\WORD}{\let\@word@tmp=\empty\@ifnextchar(%) bracket match

95 {\@word@ii}{\@word@i}}

96 \newcommand{\@word@i}[2][x]{\@end{#1}{#2}} % Nice easy single level word

97 \def\@word@ii(#1){\@ifnextchar[%] bracket match % we have a fuller tree.

98 {\@word@iii{#1}}{\@word@iii{#1}[x]}}

99 % Here goes!

100 \def\@word@iii#1[#2]#3{\@ifnextchar\bgroup% operators follow

101 {\@word@iv{#1}{#2}{#3}}{\pstree{\TR{#1}\@do@once}{\TR[name=#2]{#3}}}}

102

103 \newcommand{\@word@iv}[4]{\pstree{\TR{#1}\@do@once}{\pstree{\TR[name=#2]{#3}}{#4}}}

\@do@once does the delayed linestyle reset required by someone using \UNJOINED

104 \newcommand{\@do@once}{\@once@tmp\def\@once@tmp{}}

105 \newcommand{\UNJOINED}{\def\@once@tmp{\global\let\psedge\@save@edge}%

106 \let\@save@edge\psedge\def\psedge##1##2{}}

6.6.3 Operator node

\OPR is used for marking the supplied word as an operator. It has no representation in the upper tree but is
described as though it were part of it. The optional firse parameter is its tag label (for drawing linking lines,
the second defines the number of logical levels to skip, which is a function of the node placement.

107 \newcommand{\OPR}[3][opr]{\skiplevels{#2}{\TR[edge=none,name=#1]{#3}}\endskiplevels}

6.7 Operator tree and linking

\OP defines items in the operator projection.

108 \newcommand\OP[2][op]{\psset{levelsep=\rrgoprsep}\@end{#1}{\@do@once#2}}

109 \newcommand{\oprlink}[4]{%

110 \ncput*[npos=1 #1]{\rnode{label}{#4}}%

111 \ncline[linestyle=dashed]{#2}{label}\ncline{->}{label}{#3}%

112 }

113 \newcommand{\LLINK}[5][]{%

114 \ncdiagg[linestyle=none,angleA=180,armA=#2]{#4}{#3}%

115 \oprlink{#1}{#3}{#4}{#5}

116 }

117 \newcommand{\RLINK}[5][]{%

118 \ncdiagg[linestyle=none,angleA=0,armA=#2]{<-}{#4}{#3}%

119 \oprlink{#1}{#3}{#4}{#5}

120 }

121 \newcommand{\rLINK}[4][]{\ncangle[linestyle=none,angleA=-90,angleB=0 #1]{#2}{#3}%

122 \oprlink{}{#2}{#3}{#4}

123 }

124 \newcommand{\LINK}[4][]{\ncangle[linestyle=none,angleA=-90,angleB=180 #1]{#2}{#3}%

125 \oprlink{}{#2}{#3}{#4}

126 }

8

127 \newcommand{\lLINK}{\LINK}

The \End command is just a simple terminal node, which may have an operator tree following it..

128 \newcommand{\End}[2][x]{\@end{#1}{#2}}

First attempt at clever operators. It might even work one day.

129 %\newcommand\Ende{\@ifnextchar[%]

130 %{\@Ende}{\@Ende[x]}}

131 %

132 %\def\@Ende[#1]#2{\def\@End{\TR[name=#1]{#2}}%

133 %\typeout{@Ende}

134 %\@check@Ende}

135 %

136 %\def\@check@Ende{\@ifnextchar(%] bracket matching

137 %{\typeout{Brkt}}{\typeout{No Brkt}}

138 %\@End}%

139 %

140 %\def\@check@OP{%

141 %\typeout{\@End}

142 %\@ifnextchar[%] bracket matching

143 %{\@OP}{\@ifnextchar<% > bracket matching

144 %{\@OP[x]}{}}%

145 %}

146 %\def\@OP[#1]<#2>{\typeout{OP}\def\@Tmp{\expandafter\pstree{\TR[name=#1]{#2}}%

147 %{\@End}}\let\@End=\@Tmp}

The \@end command is run by all things that could be followed by optional decendents. Optional parts are
enclosed in {}, just like a normal arg. The reason for this is so that the user dosn’t need to define the tree in
some horrible inverted order, or remember a whole different set of commands.

148 \newcommand{\@end}[2]{\@ifnextchar\bgroup% matching

149 {\@are@ops{#1}{#2}}{\@end@{#1}{#2}}}

150 \newcommand{\@end@}[2]{\TR[name=#1]{#2}}

151 \def\@are@ops#1#2#3{\pstree{\@end@{#1}{#2}}{#3}}

6.8 Macros for fans/triangles

Adjustment in position of fan label due to height of line or something similar.

152 \def\rrgfantweak{-1pt}

Draw a fan, but first find out how many arguments we have. I.e. we allow \FanEnd{depth}{head}{text}

or \FanEnd{head}{text} plus an optional [label] for the head.

153 \newcommand{\FanEnd}[3][fan]{%

154 \@ifnextchar\bgroup{\@fanend{#1}{#2}{#3}}{\@@fanend{#1}{1}{#2}{#3}}}

155 \def\@fanend#1#2#3#4{\@@fanend{#1}{#2}{#3}{#4}}

156 \newcommand{\@@fanend}[4]{

157 \setbox\@tempboxa\hbox{#4}%

158 \setlength{\rrg@tmpdim}{\wd\@tempboxa}%

159 \addtolength{\rrg@tmpdim}{-1ex}%

160 \setlength{\rrg@tmpdimb}{\psk@levelsep}%

161 \setlength{\rrg@tmpdima}{\psk@levelsep}%

162 \setlength{\rrg@tmpdimb}{#2\rrg@tmpdima}%

163 \addtolength{\rrg@tmpdimb}{+0.7ex}%

164 \addtolength{\rrg@tmpdimb}{-\ht\@tempboxa}%

165 \addtolength{\rrg@tmpdimb}{-\pslabelsep}%

166 \addtolength{\rrg@tmpdimb}{\rrgfantweak}%

167 \pstree[thislevelsep=\rrg@tmpdimb]{\TR{#3}}{\Tfan[fansize=\rrg@tmpdim]%

168 \nbput*[npos=1.5,name=#1]{#4}}

169 }

6.9 Final bits and pieces

This one should have been defined in latex.ltx

170 \DeclareRobustCommand*\textsubscript[1]{%

171 \@textsubscript{\selectfont#1}}

172 \def\@textsubscript#1{%

173 {\m@th\ensuremath{_{\mbox{\fontsize\sf@size\z@#1}}}}}

9

Now I make some shortcuts, and use the \textsubscript command

174 \newcommand{\spr}[1]{#1}

175 \newcommand{\sub}[1]{\textsubscript{#1}}

176 \newcommand{\subN}{\textsubscript{\scshape{n}}}

OPJoin is used to define a joined operator tree - see example in text. Args for \OPJoin are: [Offset from centre]
{node} {node} {Text/structure}

177 \newcommand{\OPJoin}[4][2\rrgoprsep]{\ncline[linestyle=none]{#2}{#3}%

178 \nbput[labelsep=#1,npos=0.5]{\Rnode{join-#2-#3}{#4}%

179 }\ncline[linestyle=solid]{#2}{join-#2-#3}%

180 \ncdiag[armA=0,armB=0]{#3}{join-#2-#3}}

It could get very confusing if the user re-defines these.. curved trees, anyone?

181 \def\psedge{\ncdiag}

182 \psset{levelsep=3.5em,nodesep=1pt,angleA=-90,angleB=90,armA=0,armB=0}

10

